A sophisticated computer vision system leveraging deep learning and transfer learning techniques to perform accurate product image classification. The system utilizes MobileNetV2 architecture with custom modifications for optimal performance on e-commerce product images.
lr=1e-3, momentum=0.9, nesterov=True
lr=1e-4
lr=1e-4 (Selected)
lr=1e-4, weight_decay=1e-5
lr=1e-4
lr=1e-4
lr=1e-4
lr=1e-4
| Category | Precision | Recall | F1-Score |
|---|---|---|---|
| Baby Products | 0.91 | 0.89 | 0.90 |
| Beauty & Health | 0.72 | 0.66 | 0.69 |
| Clothing & Accessories | 0.96 | 0.89 | 0.93 |
| Electronics | 0.74 | 0.87 | 0.80 |
| Grocery | 0.85 | 0.94 | 0.89 |
| Hobby & Arts | 0.81 | 0.71 | 0.76 |
| Home & Kitchen | 0.67 | 0.61 | 0.64 |
| Medicine & Supplements | 1.00 | 0.20 | 0.33 |
| Pet Supplies | 0.87 | 0.72 | 0.79 |
| Sports & Outdoor | 0.73 | 0.78 | 0.75 |